Обратный перевод системы счисления это

Основные
понятия 2

Преобразование
чисел из одной системы счисления в
другую 4

Перевод
целого числа из десятичной системы в
другую позиционную систему счисления 4

Перевод
правильной десятичной дроби в любую
другую позиционную систему счисления 5

Перевод
числа из двоичной (восьмеричной,
шестнадцатеричной) системы в десятичную. 6

Перевод
из двоичной системы счисления в
шестнадцатеричную и обратно. 7

Перевод
из двоичной системы счисления в
восьмеричную и обратно. 9

Арифметические
операции в позиционных системах
счисления 12

Сложение 12

Вычитание 13

Умножение
и деление в двоичной системе 14

MAC
адрес. 15

Упражнения 17

Основные понятия

Система
счисления
– это совокупность
правил наименования и изображения чисел
с помощью набора символов, называемых
цифрами.

Используются
три типа систем счисления:

  • позиционная
    – представление числа зависит от
    порядка записи цифр.

  • непозиционная
    – представление числа не зависит от
    порядка записи цифр

  • смешанная
    – нет понятия «основание»: либо оснований
    несколько, либо оно вычисляемое

В
непозиционных
системах вес цифры

(т.е. тот вклад, который она вносит в
значение числа) не
зависит от ее позиции
в
записи числа.

В
позиционных
системах

счисления вес
каждой цифры изменяется в зависимости
от ее положения

(позиции) в последовательности цифр,
изображающих число. Например, в числе
757,7 первая семерка означает 7 сотен,
вторая – 7 единиц, а третья – 7 десятых
долей единицы.

Сама
же запись числа 757,7 означает сокращенную
запись выражения

700
+ 50 + 7 + 0,7 = 7∙102
+ 5∙101
+ 7∙100
+ 7∙10-1
= 757,7.

Любая
позиционная система счисления
характеризуется своим основанием.

Основание
позиционной системы счисления

— это количество различных знаков или
символов, используемых для изображения
цифр в данной системе.

За
основание системы можно принять любое
натуральное число — два, три, четыре и
т.д. Следовательно, возможно
бесчисленное множество позиционных
систем
:
двоичная, троичная, четверичная и т.д.
Запись чисел в каждой из систем счисления
с основанием q
означает сокращенную запись выражения

an-1
q
n-1
+ a
n-2
q
n-2+
… + a
1
q
1
+ a
0
q
0
+ a
-1
q
-1
+ …
+
am
qm,

где
ai
– цифры числа; n
и m
– число целых и дробных разрядов,
соответственно.

Таблица
1. Эквиваленты чисел в различных системах
счислений

Системы
счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

Преобразование чисел из одной системы счисления в другую Перевод целого числа из десятичной системы в другую позиционную систему счисления

При
переводе целого десятичногочисла в систему с основаниемqего
необходимо последовательноделитьнаqдо тех пор, пока не останется
остаток, меньший или равныйq–1.
Число в системе с основаниемqзаписывается как последовательность
остатков от деления, записанных в
обратном порядке, начиная с последнего.

  1. в
    двоичную:

7510
= 1
001 0112 2610=110102

  1. в
    восьмеричную:

7510=
1138 24110=3618

  1. в
    шестнадцатеричную:

7510=
4B16362710=Е2В16

Перевод правильной десятичной дроби в любую другую позиционную систему счисления

При
переводе правильной десятичной
дроби
в систему счисления с основаниемqнеобходимо сначала саму дробь, а
затем дробные части всех последующих
произведений последовательноумножатьнаq, отделяя после каждого умножения
целую часть произведения. Число в новой
системе счисления записывается как
последовательность полученных целых
частей произведения.

Умножение
производится до тех пор, пока дробная
часть произведения не станет равной
нулю. Это значит, что сделан точный
перевод. В противном случае перевод
осуществляется до заданной точности.

  1. в
    двоичную:

0,3510= 0,010112 0,562510=0,10012

или

0,84710=0,11012

  1. в
    восьмеричную:

0,3510
= 0,2638
0,6562510=0,528

  1. в
    шестнадцатеричную:

0,3510=
0,5916
0,84710=0,D8D16

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Перевод чисел из одной системы счисления в другую

Автор статьи

Екатерина Андреевна Гапонько

Эксперт по предмету «Информатика»

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

  • При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + … + A_2 \cdot 2^1 + A_1 \cdot 2^0$

    При переводе рекомендуется для удобства использовать таблицу 1.

Таблица 1

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

  • Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + … + A_2 \cdot 8^1 + A_1 \cdot 8^0$

    При переводе рекомендуется использовать таблицу 2.

Таблица 2

Рисунок 2. Таблица 2

«Перевод чисел из одной системы счисления в другую» 👇

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

  • Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + … + A_2 \cdot 16^1 + A_1 \cdot 16^0$

    При переводе рекомендуется использовать таблицу 3.

Таблица 3

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

  • Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби — дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Таблица 4

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение. Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Пример 8

Число $1011100011_2$ перевести в шестнадцатеричную систему счисления.

Решение. Используя таблицу 4 переведем число из двоичной системы счисления в шестнадцатеричную:

$0010 1110 0011_2 = 2E3_{16}$

Правила перевода чисел из любой системы счисления в двоичную

  • Для перевода числа из восьмеричной системы счисления в двоичную следует каждую цифру заменить эквивалентной ей двоичной триадой, представленной в таблице 4.

Пример 9

Число $531_8$ перевести в двоичную систему счисления.
Решение:
$531_8 = 101011001_2$

  • Для перевода числа из шестнадцатеричной системы счисления в двоичную требуется каждую цифру заменить эквивалентной ей двоичной тетрадой, представленной в таблице 4.

Пример 10

Число $EE8_{16}$ перевести в двоичную систему счисления.

Решение:

$EE8_{16} = 111011101000_2$

  • При переводе числа из восьмеричной системы счисления в шестнадцатеричную и обратно, необходимо выполнить промежуточный перевод чисел в двоичную систему.

Пример 11

Число $FEA_{16}$ перевести в восьмеричную систему счисления.

Решение:

$FEA_{16} = 111111101010_2$

$111 111 101 010_2 = 7752_8$

Пример 12

Число $6635_8$ перевести в шестнадцатеричную систему счисления.

Решение:

$6635_8 = 110110011101_2$

$1101 1001 11012 = D9D_{16}$

Воспользуйся нейросетью
от Автор24

Не понимаешь, как писать работу?

Попробовать ИИ

Дата написания статьи: 23.03.2016

План урока:

Системы счисления – виды, особенности

Непозиционные системы счисления, их особенности

Основные позиционные системы счисления, правила перевода

Шестандцатеричная система счисления

Арифметические операции в двоичной системе

Сравнение систем

Таблицы истинности

Развиваясь, древний человек стал испытывать потребность в способах выражения количества. Подсчет убитых животных, количество врагов или соседей – причин становилось все больше. Сначала люди использовали только понятия «один», «много». После стали использовать понятие «пара», чтобы обозначить два предмета, это намного облегчило жизнь.

Постепенно перешли к использованию подручных средств – пальцев на руках и ногах, зарубок на коре дерева, кости животного или узелков на канате. Именно такие примитивные «счетные машины» позволили через тысячи лет узнать, что предки умели не просто считать, но даже умудрялись фиксировать результаты подсчета.

Кроме зарубок и узелков появилась потребность в символах, выражающих большее количество чего-либо, чем «один». Тогда были придуманы первые знаки для выражения больших значений. Так, египтяне, использовали знаки для цифр 1, 5, 10. Число 324 в их системе выглядело так: 1 sistemy schisleniya

А описание чисел при помощи специальных знаков и является системой счисления.

Системы счисления – виды, особенности

Система счисления (СС) – способ выражения чисел при помощи специальных правил и знаков, которые называются цифрами.

2 sistemy schisleniya
Источник

Все существующие системы делят на 2 группы:

  1. Позиционные системы счисления – такие, в которых, в зависимости от положения, цифры будет иметь разное значение. К этой группе относится арабская СС, в которой на первом месте справа цифра будет обозначать единицы, на втором – десятки, на третьем – сотни и так далее.

Чтобы выразить число 475, достаточно по порядку написать 3 символа, 475, выражая 5 единиц, 7 десятков и 4 сотни.

К этой группе также относятся СС с различными основаниями (2,8,16).

  1. Непозиционные СС – имеет значение именно знак, а не его положение. Единицы, десятки, сотни обозначаются определенными символами. Яркий представитель этой группы – римская СС.

Еще одна особенность – чтобы выразить число и не использовать сотни символов, применяется прибавление и вычитание. Написать 475 римскими знаками можно так CCCCXXXXXXXIIIII, но это нерационально. Если отнимать или прибавлять цифры, получится меньшее количество символов – CDLXXV. Цифра слева означает, что ее нужно отнять от большего числа, а справа – прибавить.

12 – XII

8 – VIII или IIX

Правильным считается тот вариант, при котором получается меньше символов.

Интересно. Первой позиционной СС была вавилонская и была она шестнадцатиричная! А в 19 веке использовали двенадцатеричную СС.

Алфавит СС – знаки, которые используются для обозначения цифр.

Основание – количество знаков, которыми кодируются числа.  Еще оно показывает отличие между цифрами на разных позициях. Основание – целое число, начиная с 2.

Важно. Если в тексте идет речь о различных системах, то чтобы уточнить, какая используется основа, ставится подстрочный знак: 12548, 011001112. Примеры? Если же обозначения нет, по умолчанию это десятичная (12549).

Разряд – положение, позиция обозначения цифры в числе. Пример?

3 sistemy schisleniya

Непозиционные СС, их особенности

Первоначально древние люди ставили отметки (черточки-зарубки, точки), чтобы обозначить количество того или иного предмета. Отклики этого подхода все еще встречаются (полоски у военных, счетные палочки).

4 sistemy schisleniya

Постепенно от единиц они переходили к группам предметов по 3, 5, 10 единиц. Постепенно такие группы стали обозначаться определенными символами, что позволило сократить размер записи.

5 sistemy schisleniya
Источник

Римская СС

В ней определенным цифрам отвечают латинские буквы. Их сумма и будет числом.

6 sistemy schisleniya

Основные рекомендации при пользовании римскими цифрами:

  1. Символы следует писать по убыванию слева направо.
  2. Нежелательно записывать подряд более 3 одинаковых знаков.
  3. Положение цифры обозначает, какой ее вклад – отрицательный, если она стоит слева от большего числа, положительный – справа.

7 sistemy schisleniya
Таблица римских цифр 

Недостаток этой СС в том, что для больших чисел недоступны операции сложения или другие, ещё она сложная и громоздкая. Зато римские цифры отлично вписались там, где нужна нумерация и эстетика: циферблаты, номера глав, списки, серии документов.

Основные позиционные СС, правила перевода

Двоичная система счисления

Систему, на которой основывается работа компьютеров, придумал гениальный немецкий ученый Г.В. Лейбниц (еще до 19 века!). Он придумал и описал СС, в которой все вычисления проводятся при помощи двух простейших символов – 0 и 1.

Компьютер, как механическое устройство, получает команды в виде двоичной кодировки. Он не в силах понять сложные задания, человеческую речь, музыку или тысячи оттенков, а переводя/кодируя всю необходимую информацию при помощи 0 и 1 (сеть, отсутствие сети), можно передать ему любые команды или информацию. Естественно, такие задания выглядят как огромные массивы двух знаков.

8 sistemy schisleniya

Алгоритм перевода чисел из десятичной в двоичную систему:

  1. Деление на основу СС до тех пор, пока не останется в остатке значение меньше значения основы.
  2. Записать остатки, от последнего к первому.
  3. Первый ноль можно не писать.

0111 0100 11002 

Этот порядок действия позволят переводить в любую позиционную СС. В данном случае, основа – 2, остаток < или равен =.

9 sistemy schisleniya

10 sistemy schisleniya

Обратный алгоритм перевода из двоичной в десятичную систему счисления:

Записать число развернуто, то есть, сколько сотен, десятков и единиц в нем, но учитывая основу – 2

11 sistemy schisleniya

Объяснение. Развернутая форма записи 579: 5*102+7*101+9*100 = 57910.

12 sistemy schisleniya
Источник

Обычно мы пользуемся свернутой формой записи чисел, то есть без разбивки на разряды и умножения на основу.

  1. Умножить и суммировать полученные значения.

13 sistemy schisleniya

А чтобы было легче, пользуются готовой таблицей степеней 2.

14 sistemy schisleniya

Альтернативный способ преобразования для гуманитариев

Для начала нужно написать степени двойки, начиная с самой большой:

15 sistemy schisleniya

Далее нужно отнимать от числа максимальную степень двойки и напротив нее ставить 1, если есть в исходном варианте или 0, если его нет.
Перевод числа 579

16 sistemy schisleniya

Обратно еще проще. Подсчитать количество знаков – это будет степень 2 в степени -1. И так далее. А проще при помощи той же таблицы:

17 sistemy schisleniya

Если же оно на 1 больше, то число будет начинаться и заканчиваться на 1, а внутри – сплошные 0.

18 sistemy schisleniya

Восьмеричная СС

Основой такой системы является 8, а числа восьмеричной системы 0-7. Данная система счисления является позиционной и целочисленной. Применяется в сферах, связанных с цифровыми технологиями, особенно в Linux-программном обеспечении (права доступа, исполнения).

19 sistemy schisleniya

Пример: Перевести 5798 из десятичной в восьмеричную систему счисления:

20 sistemy schisleniya

Обратный перевод из восьмеричной СС в десятичную:

11038 = 1∙83+1∙82+0∙81+3∙80 = 512+64+0+3 = 57910

Таблица степеней

21 sistemy schisleniya

Альтернативный вариант таблицы степеней 

22 sistemy schisleniya

Шестнадцатеричная СС

Это целочисленная система с основанием 16 (символы шестнадцатеричной системы счисления 0-9 и буквы A – F). Используется в реализации компьютерного программирования и документации на низком уровне, так как 8-битный байт, для записи которого удобно использовать 2 цифры из шестнадцатеричной системы.

Стандарт Юникод использует 4 и более символов 16-ой СС.

23 sistemy schisleniya

Для записи цвета из красного, зеленого и синего (R, G и B) также используют эту систему.

24 sistemy schisleniya

Алгоритм преобразования чисел в 16СС

Способ преобразования аналогичный предыдущим – расписывание числа как многочлена с учетом степеней 16. Для этого число делится на 16, в итоге – перечень остатков от деления, записанных наоборот.

25 sistemy schisleniya

26 sistemy schisleniya

В сети есть калькуляторы, способные выполнять преобразование чисел в различные СС и обратно (некоторые даже с детальным описанием процесса).

Арифметика для 2СС

Принципы выполнения простейших арифметических операций одинаковы для любых позиционных систем, независимо от основы:

27 sistemy schisleniya

Особенности арифметики СС с разными основами:

  • при сложении чисел двух 1 в двоичной системе переполняется младший разряд (сумма = или ˃ основания СС), то единица переходит к большему разряду;
  • если есть 0-1=1, идет заимствование из старшего разряда;
  • умножать 2СС удобнее всего в столбик, учитывая 4 основные правила;
  • заем единиц в 2СС при отнимании/делении, тогда она дает промежуточным разрядам по 1, а для занимаемого разряда сразу 11.

Примеры арифметических операций:

28 sistemy schisleniya

Для удобства разработаны готовые таблицы сложения в различных системах:

Сложение в 8-ой СС                                              в 16СС

29 sistemy schisleniya

С их помощью можно быстро суммировать в различных СС.

Сложение для разных СС на примере 15 и 6:

30 sistemy schisleniya

Если необходимо сложить числа из разных систем, их приводят к одной основе. Самым простым вариантом будет перевод в десятичную систему, решение простого примера и перевод результата в любую из систем.

Рассмотрим сумму 438 и 5616. Результат можно выразить в любой СС, но проще привести к 8- или 16-ричной:

 Переводим число 56 в восьмеричную через двоичную:

31 sistemy schisleniya

Умножение в 8-ой СС

32 sistemy schisleniya

в 16СС

33 sistemy schisleniya

Сравнение систем

СС могут быть с произвольной основой, но популярны 2,8,10,16-ые.

Сравнительная таблица разных систем счисления:

34 sistemy schisleniya

Перевод числа 75 в разные системы:

35 sistemy schisleniya

36 sistemy schisleniya
Источник

Правила перевода из двоичной, восьмеричной и шестнадцатеричной в 10СС:

Исходный вариант следует разделить на тройки цифр, с крайней справа. Если не хватает, старший разряд дополнить 0. Далее под каждой триадой ставится подходящий символ из 8‑ой системы.

37 sistemy schisleniya

Рассмотрим перевод на примере числа 579, которое соответствует 10010000112 

001 001 000 011

38 sistemy schisleniya

Правила перевода из двоичной в шестнадцатеричную систему счисления:

Число разбивается по 4 знака, начиная справа (с меньшего разряда). Если не будет хватать символов у старшего разряда, тетраду дополняют нулями.

10010000112

0010 0100 0011

39 sistemy schisleniya

40 sistemy schisleniya

Сравнительный перевод дробей в СС

Чтобы перевести правильные дроби из 10-ой СС в другие позиционные, следует придерживаться правила, которое хорошо видно на примере перевода числа 0,35:

41 sistemy schisleniya

Удобно писать над каждой цифрой порядок, а дальше ее умножить на основу СС в степени разряда.

42 sistemy schisleniya

Перевод целых и дробей в 2СС, 8СС, 16СС:

43 sistemy schisleniya

44 sistemy schisleniya

Таблицы истинности

При помощи тех же нулей и единиц создаются таблицы истинности логических выражений, в которых описаны всевозможные варианты.

Основные логические операции

45 sistemy schisleniya

Например, конъюнкция является одной из логических операций. Она является истиной только в том случае, если два высказывания имеют истинные значения.

Логические переменные таблицы истинности обозначают p и q, а их значения выражают при помощи 0 и 1, где 0 – ложь, 1 – истина:

46 sistemy schisleniya

Фрагмент таблицы истинности для конъюнкции.

Так выражаются условия для всех логических операций.

Применяются таблицы истинности еще с начала 20 века в алгебре, логике, программировании.

При составлении урока был использован некоторый материал из сайта: https://studylib.ru/doc/6220932/sistemy-schisleniya

Десятичная система счисления


Десятичная система счисления

4.5

Средняя оценка: 4.5

Всего получено оценок: 328.

4.5

Средняя оценка: 4.5

Всего получено оценок: 328.

Все вычисления в математике выполняются в позиционной десятичной системе счисления. Кратко об особенностях десятичной системы можно прочитать в данной статье.

Что такое десятичная система счисления

В десятичной системе для представления чисел использует десять арабских цифр от 0 до 9, соответственно основанием десятичной системы счисления является число 10.

Историки, изучающие культуру древнего востока, в Индии обнаружили плиту с начертанием числа в позиционной десятичной системе. Возраст найденного артефакта составляет порядка 1,5 тысяч лет. Здесь же в древней Индии впервые используется ноль, как самостоятельная цифра.

Рис. 1. Индийские цифры, эволюция индийских цифр.

Развернутая форма представления десятичного числа

Важным понятием в позиционном подходе представления чисел является понятие разряда. Различают разряды единиц, десятков, сотен, тысяч и так далее. Любое десятичное число можно представить, в так называемом развернутом виде, когда число записывается в виде суммы разрядных слагаемых, представленных в виде произведения значащей цифры разряда и числа десять в степени соответствующего разряда.

Например, десятичное число 46758 в развернутом виде будет выглядеть следующим образом:

46758 = 4 * 10^4 + 6 * 10^3 + 7 * 10^2 + 5 * 10^1 + 8 * 10^0

Или так:

46758 = 4 * 10000 + 6 * 1000 + 7 * 100 + 5 * 10 + 8 * 1

Прямой перевод числа из десятичной системы

Перевод целого десятичного числа в какую-либо систему счисления выполняется путем поочередного деления самого числового значения, а затем полученных частных на основание системы счисления, в которую производится перевод.

Например, для перевода десятичного числа в двоичную систему выполняют деление на два, в восьмеричную – на восемь, в шестнадцатеричную – на шестнадцать. В принципе, десятичное число можно перевести и в пятеричную и семеричную системы, выполнив деление на пять или семь.

Выполнив первый шаг деления на, например, два, остаток запоминают, а полученное частное снова делят на основание. Эту операцию выполняют до тех пор, пока последнее частное не будет меньше или равно делителю.

Записывать сформированное число в новой системе счисления необходимо начиная с итогового частного и затем друг за другом выписывая остатки от деления от последнего к первому.

Например, прямой перевод числа 27 из десятичной системы в двоичную выполняют так:

27 / 2 = 13 и остаток 1

13 / 2 = 6 и остаток 1

6 / 2 = 3 и остаток 0

3 / 2 = 1 и остаток 1

Таким образом, 27 в двоичном формате это число 11011.

Для перевода чисел в пределах можно пользоваться таблицей соответствия десятичных и двоичных чисел

Рис. 2. Таблица соответствия двоичных и десятичных чисел.

Обратный перевод числа в десятичную систему

Для перевода чисел в десятичную систему удобно пользоваться развернутой формой. При этом числовые значения записываются в виде суммы произведений цифр разрядов на основание текущей системы счисления в степени разряда.

Например, двоичное число 11011 можно представить так:

1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 =27

Для упрощения вычислений удобно пользоваться таблицей степени двойки

Степени двойки

Рис. 3. Степени двойки.

Заключение

Что мы узнали?

В десятичной позиционной системе для представления числовых значений используются десять арабских цифр. Числа в такой системе можно представлять в развернутом виде. Перевод десятичных чисел в другую систему выполняется путем поочередного деления на основание новой системы счисления. Обратный перевод удобно выполнять с использованием развернутой формы записи числа.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Роман Журавлев

    5/5

  • Алина Трясунова

    4/5

  • Игорь Карабута

    3/5

  • Павел Слюсаренко

    5/5

  • Руслан Велиулаев

    3/5

Оценка статьи

4.5

Средняя оценка: 4.5

Всего получено оценок: 328.


А какая ваша оценка?

  • Обратите внимание перевод на английский
  • Обратный перевод системы счисления онлайн с решением
  • Обратимый перевод на английский
  • Обратный перевод системы счисления калькулятор
  • Обрамлять перевод на английский